RSS

Link untuk download buku

Buku, jurnal, artikel merupakan kebutuhan bagi akademisi terutama untuk digunakan sebagai bahan referensi atau rujukan perkuliahan dan penulisan. Banyak buku “bagus” berbahasa inggris yang kadang sulit ditemukan di toko buku. link berikut mungkin dapat membantu anda untuk mencari dan mendownload buku dengan gratis sebagai bahan bacaan dan referensi.

http://gen.lib.rus.ec/

genlib

 
Leave a comment

Posted by on August 26, 2015 in Uncategorized

 

Memilih Jurnal untuk Publikasi Ilmiah

Setelah lama tidak update postingan blog, berikut saya share informasi yang baru saja saya dapat dalam workshop yang saya ikuti mengenai memilih jurnal yang tidak abal-abal atau predator.

beberapa hal yang harus diperhatikan adalah:

1. cek, apakah nama jurnal yang anda tuju terdaftar. salah satu link yang bisa digunakan untuk mengecek nama jurnal dan rankingnya adalah: http://scimagojr.com/

ranking dan Q belum menjamin bahwa jurnal tersebut tidak abal-abal.

2. jurnal abal-abal biasanya berbayar

3. Cek publishernya (bisa lewat: http://wokinfo.com/mbl/publishers) pastikan publisher terpercaya

4. lihat chef editor. paling tidak terdiri dari 3 negara berbeda dan atau  dari 3 instintusi yang berbeda tiap negara.

terima kasih

2. lihat pu

 
Leave a comment

Posted by on August 2, 2015 in Uncategorized

 

KONTES LITERASI MATEMATIKA (KLM) JAWA TIMUR & BALI TINGKAT SMP/MTs

KONTES LITERASI MATEMATIKA (KLM) JAWA TIMUR & BALI 2014

Sharing Informasi

pada tanggal 22 Nopember 2014, akan diadakan kontes literasi matematika untuk SMP/MTs sederajat lingkup Jawa Timur dan Bali.

Kontes tersebut akan dilaksankan di Kampus Pascasarjana Unesa (Universitas Negeri Surabaya) Ketintang. Batas pendaftaran 19 Nopember 2014.

Bagi yang berminat dapat menghubungi CP yang tertera pada brosur berikut.

BROSUR KLM 2014 SMALL 1 BROSUR KLM 2014 SMALL 2

 
Leave a comment

Posted by on November 12, 2014 in Uncategorized

 

Getalslierten “Number String”: Math Game/Permainan Matematika

(http://www.fi.uu.nl/toepassingen/03094/toepassing_rekenweb.html)

Gambar 1. Tampilan awal game getalslierten (layout) pada komputer

Getalslierten “Number String” merupakan permainan matematika yang dirancang untuk anak kelas 1 sekolah dasar. Melalui permainan ini siswa diajarkan untuk mengurutkan bilangan 1 – 100. Selain itu siswa juga dapat melatih kemampuan menghitung bilangan berpola lima-lima atau sepuluh-sepuluh. Sebenarnya permainan ini merupakan permainan yang berbasis ICT (java applet) yang dapat di akses di http://www.fi.uu.nl/toepassingen/03094/toepassing_rekenweb.html. Namun, permainan ini juga bisa dimainkan secara offline (Paper and pencil based) seperti tampak pada lembar aktivitas.

Permainan Getalslierten “Number String” dapat dilakukan baik secara individual, berpasangan dan/atau berkelompok, bahkan bisa dimainkan oleh siswa 1 kelas.

Jika permainan ini akan digunakan untuk seluruh siswa 1 kelas (permainan kelas) maka sebaiknya guru membuatnya dalam ukuran yang besar. Setiap tempat angka di cetak dalam 1 lembar kertas terpisah dan disusun di papan tulis. Berikan beberapa angka kepada siswa dan minta mereka untuk menempatkannya sesuai dengan tempat angka itu seharusnya di papan tulis.

Namun jika permainan ini digunakan dalam kegiatan individu atau kelompok maka lembar aktivitas berikut dapat digunakan.

Download activity/permainan/ worksheetGetalslierten

 

Tags: , , , , ,

Book of Magic Worksheet: Math Activity/game

Pada postingan terdahulu (https://evangelistanote.wordpress.com/2011/09/13/java-applet-book-of-magic/) penulis telah mengulas mengenai permainan matematika “book of magic” yang merupakan salah satu permainan matematika online untuk mengajarakan perkalian, penjumlahan, pengurangan dan pembagian. Pada kesempatan ini penulis akan kembali mengulas permainan ini tetapi dalam bentuk paper-pencil based (bukan permainan online).

Permainan book of magic pada postingan kali ini merupakan modifikasi permainan matematika online Book of Magic yang bisa diakses di http://www.fi.uu.nl/toepassingen/00141/toepassing_rekenweb.en.html). melalui permainan ini siswa  dapat melatih kemampuan berpikir mereka terkait dengan penyelesaian soal terbuka mengenai operasi hitung bilangan bulat. Permainan book of magic berikut cocok diberikan untuk anak usia 9 samapai 12 tahun. Berikut ini akan dipaparkan mengenai aturan, contoh dan beberapa soal serta kartu yang bisa digunakan dalam permainan. Banyak soal dapat ditambah dengan cara membuatnya sendiri.

Aturan:

  1. Gunakan angka dan symbol operasi bilangan yang diberikan pada halaman buku sebelah kiri sehingga membentuk angka yang ada pada halaman sebelah kanan buku.
  2. Angka yang ada hanya boleh dipakai satu kali tetapi, symbol operasi bilangan dapat digunakan lebih dari satu kali.
  3. Tuliskan perhitunganmu pada halaman buku sebelah kiri
  4. Tunjukkan jawabanmu pada guru, dan kumpulkan kartu magic jika jawabanmu benar
  5. 5.     Buatlah sebuah soal seperti yang permainan yang telah kalian mainkan.

Contoh permainan:

 

 

 

 

 

 

 

 

 

Download Lembar aktivitas/permainan: book of maggic-worksheet

 

Tags: , , ,

REVIEW ARTICLE: Realistic mathematics education theory as a guideline for problem-centered, interactive mathematics education (Koeno Gravemeijer)

Reviewed by Evangelista Lus W.P. (Impome 2011)

Prof. Koeno Gravemeijer is professor of mathematics and science education in University of Eindhoven, Netherland. Earlier he was affiliated with the Freudenthal Institute of Utrecht University. He has written many articles and has done many researches related to curriculum development, instructional design, domain-specific instruction theories includes the theory for realistic mathematics education/RME (http://www.isls.org/icls2010/keynote_2.html). One of his writing is “Realistic mathematics education theory as a guideline for problem-centered, interactive mathematics education” (2010) which can be read in book titled “A decade of PMRI in Indonesia” edited by R. Sembiring, K. Hoogland and M. Dolk. and it will be reviewed in this essay.

Based on fact that there has been changeover in mathematics education from thinking about instruction as the ‘transmission of knowledge’ towards ‘learning as the construction knowledge’, and as the result there has been a move towards problem centered, interactive mathematics, which requires a change in how instruction is conceptualized. Those give its own challenge for the teacher that is to guide the construction of the students in indirect manner which can be helped using RME theory. So that, in his article, Gravemeijer discusses three main points: problem-centered mathematics; fostering reinvention; and RME theory (includes the role of concrete material, context problem and the cultivation of mathematical interest).

1.    Problem-centered mathematics

Gravemeijer explain that problem-centered, interactive, classroom has different didactical contract than traditional classroom which social norm culture in which teacher is always right. Students who are learning in classroom culture in which teacher is always right will not easily start to think on their own (Desforges & Cockburn in Gravemeijer, 2010) while in the problem-centered classroom, students have to think for themselves, not for the teacher expectation. They have to explain and justify their solution, try to understanding other students’ reasoning, ask question about the explanation in which they do not understand, and challenge arguments they do not agree with. And to make students particular with that norm, teacher should not just tell them verbally or make a rule of that, but teacher have to shape it through experiences like by offering challenging or intriguing open task, arranging them to work in group, give inspiring content and using concrete material.

2. Fostering reinvention

Motivating and involving students in learning process is not enough. Mathematics education also has to reach the conventional mathematics goal through helping the students to build on their own thinking while constructing more sophisticated mathematics while the teacher only can get involved in what students construct. Gravemeijer wrote that to reconcile the constructivist stance we can use a ‘hypothetical learning trajectory/HLT’ which is combination of instructional and mental activities, and their relation with the instructional goal (Simon, 1995 in Gravemeijer, 2010). HLT have to fit with long-term learning strands which is uneasy and complicated to design. Due of that, Gravemeijer argue that teachers should be offered or given support such as by a local instruction theory (a theory about possible learning process for a given topic) which is included in a domain-specific instruction theory such as RME theory. Read the rest of this entry »

 

Tags: , , , ,

UNDERSTANDING RME

Written By: Silvana N. S. (IMPoME students 2011)

(Adopted  from”Developing A Learning EnvironmentOn Realistic Mathematics Education For Indonesian Student Teachers” by Prof. Zulkardi)

In Indonesia, many pupils still see mathemathics as a ghost. Furthermore, teachers make the already challenging subject that much harder for the pupils to learn. The teachers also still use  teaching method based on teacher-centered instead of student-centered. Thus, the pupils are passive and simply copy what teacher writes on the black board. Same thing happen to the assessment process, it is not integrated in the instructional process but is provided at the end of the lesson. The problems used in assessment only focus on algorithm and procedures and they lack of practical applications. These problems can be catagorized to the lower level of thinking. One promising solution for all those mathematics education problems in Indonesia is RME (Realistic Mathematics Education).

RME is one of teaching and learning theories in mathematics education. This theory is invited and developed for the first time in Netherlands in 1970’s but in Indonesia it starts to be developed in 2000’s. It is  strongly influenced by Hans Freudenthal’s concept of ‘mathematics as a human activity’ (Freudenthal, 1991). According to Freudenthal, pupils should not be treated as passive recipients of ready-made mathematics, but they should discover and reinvent mathematics by doing it themselves.

There are five characteristics of RME (de Lange, 1987; Gravemeijer, 1994):

  • the use of contexts in phenomenological exploration;
  • the use of models or bridging by vertical instruments;
  • the use of pupils’ own creations and contributions;
  •  the interactive character of the teaching process or interactivity; and
  • the intertwining of various mathematics strands or units.

In RME, the starting point of mathematics instruction should be experientially real to the student. This process will make them to: explore the situation; find and identify the relevant mathematical elements; schematize and visualize in order to discover patterns; and develop a model resulting in a mathematical concept. By a process of reflecting and generalizing, the pupils will develop a more complete concept. It is then expected that the pupils will subsequently apply mathematical concepts to other aspects of their daily life, and by so doing, reinforce and strengthen the concept.

In RME classroom, the teacher should:

  1. Facilitate pupils with a contextual problem that relates to the topic as the starting point.
  2. During an interaction activity, give the pupils a hint if  they need help.
  3. Let the pupils find their own solution. This means that pupils are free to make discoveries at their own level, to build on their own experiential knowledge, and perform shortcuts at their own pace.
  4. Organize and stimulate the pupils to compare their solutions in a class discussion. Ask the pupils to communicate, argue and justify their solutions.
  5. Give other contextual problems.

In RME, the assessment functions not only in the margin of instruction, but it is also an integral part of the instructional process. According to De Lange (1987), there are five  guiding principles of assessment in RME:

  1. The primary purpose of testing is to improve learning and teaching. This means that assessment should take place during the teaching-learning process in addition to at the end of a unit or course.
  2. Methods of assessment should enable the pupils to demonstrate what they know rather than what they do not know. Assessment can be conducted by using problems that have multiple solutions and can be approached using multiple strategies.
  3. Assessment should operationalize all of the goals of mathematics education: lower, middle and higher order thinking level.
  4. The quality of mathematics assessment is not determined by its accessibility to objective scoring. For that reason, the use of objective tests and mechanical tests should be eschewed in favor of assessments in which we can see whether pupils truly understand the mathematical concepts involved.
  5. The assessment tools should be practical, fit into the usual school practice.

 

 

Tags: , ,

 
Follow

Get every new post delivered to your Inbox.

%d bloggers like this: